55 research outputs found

    Audio Description in Video Games Research in Progress

    Get PDF
    As video games continue to grow in popularity, accessibility is a key concern which developers must consider to ensure the most people possible can enjoy the games they create (Cairns et al., 2019; Nova et al., 2021). With approximately 500,000 blind and partially sighted people in Canada alone, visual accessibility is a central concern of game accessibility. Visual accessibility has developed for decades with one of the most popular and effective methods of this being audio description (AD) (Fryer, 2016). Audio description comes in different styles depending on its use, with standard and extended AD being 2 of the most common types (Canadian National Institute for the Blind, 2019). Despite the success of this option in film and television, AD has not caught on in the game industry (SightlessKombat, 2020). This research looks to investigate AD as a method for visual accessibility in video games with a focus on determining the advantages and disadvantages of both standard and extended AD in this medium

    Applications of Microarray Technology to Acute Myelogenous Leukemia

    Get PDF
    Microarray technology is a powerful tool, which has been applied to further the understanding of gene expression changes in disease. Array technology has been applied to the diagnosis and prognosis of Acute Myelogenous Leukemia (AML). Arrays have also been used extensively in elucidating the mechanism of and predicting therapeutic response in AML, as well as to further define the mechanism of AML pathogenesis. In this review, we discuss the major paradigms of gene expression array analysis, and provide insights into the use of software tools to annotate the array dataset and elucidate deregulated pathways and gene interaction networks. We present the application of gene expression array technology to questions in acute myelogenous leukemia; specifically, disease diagnosis, treatment and prognosis, and disease pathogenesis. Finally, we discuss several new and emerging array technologies, and how they can be further utilized to improve our understanding of AML

    Programmed cell death 4 loss increases tumor cell invasion and is regulated by miR-21 in oral squamous cell carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The tumor suppressor Programmed Cell Death 4 (<it>PDCD4</it>) has been found to be under-expressed in several cancers and associated with disease progression and metastasis. There are no current studies characterizing PDCD4 expression and its clinical relevance in Oral Squamous Cell Carcinoma (OSCC). Since nodal metastasis is a major prognostic factor in OSCC, we focused on determining whether PDCD4 under-expression was associated with patient nodal status and had functional relevance in OSCC invasion. We also examined <it>PDCD4 </it>regulation by microRNA 21 (miR-21) in OSCC.</p> <p>Results</p> <p><it>PDCD4 </it>mRNA expression levels were assessed in 50 OSCCs and 25 normal oral tissues. <it>PDCD4 </it>was under-expressed in 43/50 (86%) OSCCs, with significantly reduced mRNA levels in patients with nodal metastasis (<it>p = 0.0027</it>), and marginally associated with T3-T4 tumor stage (<it>p = 0.054</it>). PDCD4 protein expression was assessed, by immunohistochemistry (IHC), in 28/50 OSCCs and adjacent normal tissues; PDCD4 protein was absent/under-expressed in 25/28 (89%) OSCCs, and marginally associated with nodal metastasis (<it>p = 0.059</it>). A matrigel invasion assay showed that PDCD4 expression suppressed invasion, and siRNA-mediated PDCD4 loss was associated with increased invasive potential of oral carcinoma cells. Furthermore, we showed that miR-21 levels were increased in PDCD4-negative tumors, and that <it>PDCD4 </it>expression may be down-regulated in OSCC by direct binding of miR-21 to the 3'UTR <it>PDCD4 </it>mRNA.</p> <p>Conclusions</p> <p>Our data show an association between the loss of PDCD4 expression, tumorigenesis and invasion in OSCC, and also identify a mechanism of PDCD4 down-regulation by microRNA-21 in oral carcinoma. PDCD4 association with nodal metastasis and invasion suggests that PDCD4 may be a clinically relevant biomarker with prognostic value in OSCC.</p

    Cytokine-mediated pathways of mdr1 gene regulation in cultured rat hepatocytes

    No full text
    grantor: University of TorontoP-Glycoprotein (PGP/mdr1) plays an important role in the distribution and elimination of many chemotherapeutic agents. Altered drug disposition in disease states and cancer may be due to changes in PGP/ mdr1 transporter expression. Previous results from our laboratory demonstrated a down-regulation in hepatic PGP expression and activity during acute inflammation in rats. We therefore examined the effect of various inflammatory cytokines on PGP/mdr1 regulation in cultured rat hepatocytes. Interleukin (IL-) 6 was found to decrease mdr1 mRNA expression via decreased mdr1 gene transcription, but not altered mRNA stability. Experiments in turpentine-treated rats confirmed that inflammation also caused decreased mdr1 mRNA levels and mdr1 transcription. IL-1β, on the other hand, decreased PGP protein expression, without affecting RNA levels, suggesting its action on protein stability or synthesis. We conclude that these cytokines may play roles in the regulation of PGP during acute inflammation, with IL 6 most responsible for the transcriptional effects on the mdr1 genes.M.Sc

    Design, Synthesis And In Vitro Characterization Of Novel Hybrid Peptidomimetic Inhibitors Of Stat3 Protein

    No full text
    Aberrant activation of oncogenic signal transducer and activator of transcription 3 (STAT3) protein signaling pathways has been extensively implicated in human cancers. Given STAT3\u27s prominent dysregulatory role in malignant transformation and tumorigenesis, there has been a significant effort to discover STAT3-specific inhibitors as chemical probes for defining the aberrant STAT3-mediated molecular events that support the malignant phenotype. To identify novel, STAT3-selective inhibitors suitable for interrogating STAT3 signaling in tumor cells, we explored the design of hybrid molecules by conjugating a known STAT3 inhibitory peptidomimetic, ISS610 to the high-affinity STAT3-binding peptide motif derived from the ILR/gp-130. Several hybrid molecules were examined in in vitro biophysical and biochemical studies for inhibitory potency against STAT3. Lead inhibitor 14aa was shown to strongly bind to STAT3 (K D = 900 nM), disrupt STAT3:phosphopeptide complexes (K i = 5 μM) and suppress STAT3 activity in in vitro DNA binding activity/electrophoretic mobility shift assay (EMSA). Moreover, lead STAT3 inhibitor 14aa induced a time-dependent inhibition of constitutive STAT3 activation in v-Src transformed mouse fibroblasts (NIH3T3/v-Src), with 80% suppression of constitutively-active STAT3 at 6 h following treatment of NIH3T3/v-Src. However, STAT3 activity recovered at 24 h after treatment of cells, suggesting potential degradation of the compound. Results further showed a suppression of aberrant STAT3 activity in NIH3T3/v-Src by the treatment with compound 14aa-OH, which is the non-pTyr version of compound 14aa. The effect of compounds 14aa and 14aa-OH are accompanied by a moderate loss of cell viability. © 2011 Elsevier Ltd. All rights reserved

    Suppression of cancer progression by MGAT1 shRNA knockdown.

    Get PDF
    Oncogenic signaling promotes tumor invasion and metastasis, in part, by increasing the expression of tri- and tetra- branched N-glycans. The branched N-glycans bind to galectins forming a multivalent lattice that enhances cell surface residency of growth factor receptors, and focal adhesion turnover. N-acetylglucosaminyltransferase I (MGAT1), the first branching enzyme in the pathway, is required for the addition of all subsequent branches. Here we have introduced MGAT1 shRNA into human HeLa cervical and PC-3-Yellow prostate tumor cells lines, generating cell lines with reduced transcript, enzyme activity and branched N-glycans at the cell surface. MGAT1 knockdown inhibited HeLa cell migration and invasion, but did not alter cell proliferation rates. Swainsonine, an inhibitor of α-mannosidase II immediately downstream of MGAT1, also inhibited cell invasion and was not additive with MGAT1 shRNA, consistent with a common mechanism of action. Focal adhesion and microfilament organization in MGAT1 knockdown cells also indicate a less motile phenotype. In vivo, MGAT1 knockdown in the PC-3-Yellow orthotopic prostate cancer xenograft model significantly decreased primary tumor growth and the incidence of lung metastases. Our results demonstrate that blocking MGAT1 is a potential target for anti-cancer therapy

    Metabolic Adaptation to Chronic Inhibition of Mitochondrial Protein Synthesis in Acute Myeloid Leukemia Cells

    Get PDF
    <div><p>Recently, we demonstrated that the anti-bacterial agent tigecycline preferentially induces death in leukemia cells through the inhibition of mitochondrial protein synthesis. Here, we sought to understand mechanisms of resistance to tigecycline by establishing a leukemia cell line resistant to the drug. TEX leukemia cells were treated with increasing concentrations of tigecycline over 4 months and a population of cells resistant to tigecycline (RTEX+TIG) was selected. Compared to wild type cells, RTEX+TIG cells had undetectable levels of mitochondrially translated proteins Cox-1 and Cox-2, reduced oxygen consumption and increased rates of glycolysis. Moreover, RTEX+TIG cells were more sensitive to inhibitors of glycolysis and more resistant to hypoxia. By electron microscopy, RTEX+TIG cells had abnormally swollen mitochondria with irregular cristae structures. RNA sequencing demonstrated a significant over-representation of genes with binding sites for the HIF1α:HIF1β transcription factor complex in their promoters. Upregulation of HIF1α mRNA and protein in RTEX+TIG cells was confirmed by Q-RTPCR and immunoblotting. Strikingly, upon removal of tigecycline from RTEX+TIG cells, the cells re-established aerobic metabolism. Levels of Cox-1 and Cox-2, oxygen consumption, glycolysis, mitochondrial mass and mitochondrial membrane potential returned to wild type levels, but HIF1α remained elevated. However, upon re-treatment with tigecycline for 72 hours, the glycolytic phenotype was re-established. Thus, we have generated cells with a reversible metabolic phenotype by chronic treatment with an inhibitor of mitochondrial protein synthesis. These cells will provide insight into cellular adaptations used to cope with metabolic stress.</p> </div
    corecore